Semiconductor nanomaterials
Semiconductor nanomaterials
Semiconductor nanomaterials
Semiconductor nanomaterials
The synthesis of new nanoscale materials with unique physical properties can enable revolutionary advances in science and technology. The Lee group are leaders in the design, synthesis, characterization, and hierarchical assembly of nanoscale materials. In addition, the Lieber group are leaders in characterizing fundamental structural and physical properties of these materials, and also fabricating and characterizing novel device structures and arrays of devices that are used in studies at the interface with biology and medicine. Research areas being pursued include the following:
-
Nanomaterials synthesis. We are pursuing studies of the growth and characterization of nanomaterials with an emphasis on the design and synthesis of nanowires with novel morphologies and complex modulation of dopant and/or composition in order to realize building blocks with novel electronic/photonic properties and/or morphologies that enable new opportunities in the life sciences.
-
Nanomaterials properties. Illuminating fundamental structural and physical properties of newly synthesized nanomaterials is central to both further synthetic advances and ‘applications’ of the nanostructures in other areas. In this regard, the Lieber group carries out state-of-the-art electron microscopy work to characterize atomic-level and up structure and composition, as well as measurements at the single nanostructure level to reveal electrical and optical properties.
-
Assembly of nanostructures. Controlled assembly of nanoscale wires and other nanomaterials is central to realizing our bottom-up paradigm of nanodevice arrays through functional systems, and as such we have maintained strong effort in developing both sophisticated and practical methods for hierarchical organization of nanomaterials. These studies are often motivated by and demonstrated with the development of novel tools and technologies that can open up opportunities at the interface with other areas of science.
The synthesis of new nanoscale materials with unique physical properties can enable revolutionary advances in science and technology. The Lee group are leaders in the design, synthesis, characterization, and hierarchical assembly of nanoscale materials. In addition, the Lieber group are leaders in characterizing fundamental structural and physical properties of these materials, and also fabricating and characterizing novel device structures and arrays of devices that are used in studies at the interface with biology and medicine. Research areas being pursued include the following:
-
Nanomaterials synthesis. We are pursuing studies of the growth and characterization of nanomaterials with an emphasis on the design and synthesis of nanowires with novel morphologies and complex modulation of dopant and/or composition in order to realize building blocks with novel electronic/photonic properties and/or morphologies that enable new opportunities in the life sciences.
-
Nanomaterials properties. Illuminating fundamental structural and physical properties of newly synthesized nanomaterials is central to both further synthetic advances and ‘applications’ of the nanostructures in other areas. In this regard, the Lieber group carries out state-of-the-art electron microscopy work to characterize atomic-level and up structure and composition, as well as measurements at the single nanostructure level to reveal electrical and optical properties.
-
Assembly of nanostructures. Controlled assembly of nanoscale wires and other nanomaterials is central to realizing our bottom-up paradigm of nanodevice arrays through functional systems, and as such we have maintained strong effort in developing both sophisticated and practical methods for hierarchical organization of nanomaterials. These studies are often motivated by and demonstrated with the development of novel tools and technologies that can open up opportunities at the interface with other areas of science.
The synthesis of new nanoscale materials with unique physical properties can enable revolutionary advances in science and technology. The Lee group are leaders in the design, synthesis, characterization, and hierarchical assembly of nanoscale materials. In addition, the Lieber group are leaders in characterizing fundamental structural and physical properties of these materials, and also fabricating and characterizing novel device structures and arrays of devices that are used in studies at the interface with biology and medicine. Research areas being pursued include the following:
-
Nanomaterials synthesis. We are pursuing studies of the growth and characterization of nanomaterials with an emphasis on the design and synthesis of nanowires with novel morphologies and complex modulation of dopant and/or composition in order to realize building blocks with novel electronic/photonic properties and/or morphologies that enable new opportunities in the life sciences.
-
Nanomaterials properties. Illuminating fundamental structural and physical properties of newly synthesized nanomaterials is central to both further synthetic advances and ‘applications’ of the nanostructures in other areas. In this regard, the Lieber group carries out state-of-the-art electron microscopy work to characterize atomic-level and up structure and composition, as well as measurements at the single nanostructure level to reveal electrical and optical properties.
-
Assembly of nanostructures. Controlled assembly of nanoscale wires and other nanomaterials is central to realizing our bottom-up paradigm of nanodevice arrays through functional systems, and as such we have maintained strong effort in developing both sophisticated and practical methods for hierarchical organization of nanomaterials. These studies are often motivated by and demonstrated with the development of novel tools and technologies that can open up opportunities at the interface with other areas of science.
The synthesis of new nanoscale materials with unique physical properties can enable revolutionary advances in science and technology. The Lee group are leaders in the design, synthesis, characterization, and hierarchical assembly of nanoscale materials. In addition, the Lieber group are leaders in characterizing fundamental structural and physical properties of these materials, and also fabricating and characterizing novel device structures and arrays of devices that are used in studies at the interface with biology and medicine. Research areas being pursued include the following:
-
Nanomaterials synthesis. We are pursuing studies of the growth and characterization of nanomaterials with an emphasis on the design and synthesis of nanowires with novel morphologies and complex modulation of dopant and/or composition in order to realize building blocks with novel electronic/photonic properties and/or morphologies that enable new opportunities in the life sciences.
-
Nanomaterials properties. Illuminating fundamental structural and physical properties of newly synthesized nanomaterials is central to both further synthetic advances and ‘applications’ of the nanostructures in other areas. In this regard, the Lieber group carries out state-of-the-art electron microscopy work to characterize atomic-level and up structure and composition, as well as measurements at the single nanostructure level to reveal electrical and optical properties.
-
Assembly of nanostructures. Controlled assembly of nanoscale wires and other nanomaterials is central to realizing our bottom-up paradigm of nanodevice arrays through functional systems, and as such we have maintained strong effort in developing both sophisticated and practical methods for hierarchical organization of nanomaterials. These studies are often motivated by and demonstrated with the development of novel tools and technologies that can open up opportunities at the interface with other areas of science.
The synthesis of new nanoscale materials with unique physical properties can enable revolutionary advances in science and technology. The Lee group are leaders in the design, synthesis, characterization, and hierarchical assembly of nanoscale materials. In addition, the Lieber group are leaders in characterizing fundamental structural and physical properties of these materials, and also fabricating and characterizing novel device structures and arrays of devices that are used in studies at the interface with biology and medicine. Research areas being pursued include the following:
-
Nanomaterials synthesis. We are pursuing studies of the growth and characterization of nanomaterials with an emphasis on the design and synthesis of nanowires with novel morphologies and complex modulation of dopant and/or composition in order to realize building blocks with novel electronic/photonic properties and/or morphologies that enable new opportunities in the life sciences.
-
Nanomaterials properties. Illuminating fundamental structural and physical properties of newly synthesized nanomaterials is central to both further synthetic advances and ‘applications’ of the nanostructures in other areas. In this regard, the Lieber group carries out state-of-the-art electron microscopy work to characterize atomic-level and up structure and composition, as well as measurements at the single nanostructure level to reveal electrical and optical properties.
-
Assembly of nanostructures. Controlled assembly of nanoscale wires and other nanomaterials is central to realizing our bottom-up paradigm of nanodevice arrays through functional systems, and as such we have maintained strong effort in developing both sophisticated and practical methods for hierarchical organization of nanomaterials. These studies are often motivated by and demonstrated with the development of novel tools and technologies that can open up opportunities at the interface with other areas of science.
2016
67. Influence of Mg Flux on the Photoelectrochemical Properties of p-Type GaN for Hydrogen Production
Hyojung Bae, Eunsook Kim, Jun-Beom Park, Katsushi Fujii, Sanghyun Lee, Hyo-Jong Lee, Sang-Wan Ryu, June Key Lee, and Jun-Seok Ha
J. Nanosci. Nanotech. 16, 10635 (2016).
Hyunjung Lee, Yu-Mi Ha, Sang Hyun Lee, Young-il Ko, Hiroyuki Muramatsu, Yoong Ahm Kim, Min Park and Yong Chae Jung
RSC Adv. 6, 87044 (2016).
65. A graphene superficial layer for the advanced electroforming process
Hokyun Rho, Mina Park, Seungmin Lee, Sukang Bae, Tae-Wook Kim, Jun-Seok Ha and Sang Hyun Lee*
Nanoscale 8, 12710 (2016).
64. Facile and Purification-Free Synthesis of Nitrogenated Amphiphilic Graphitic Carbon Dots
Byung Joon Moon, Yelin Oh, Dong Heon Shin, Sang Jin Kim, Sang Hyun Lee, Tae-Wook Kim, Min Park, and Sukang Bae
Chem. Mater. 28, 1481 (2016).
Yongsung Ji, Juhan Kim, An-Na Cha, Sang-A Lee, Myung Woo Lee, Jung Sang Suh, Sukang Bae, Byung Joon Moon, Sang Hyun Lee, Dong Su Lee, Gunuk Wang and Tae-Wook Kim
Nanotechnology 27, 145204 (2016).
Se-Phin Cho, Sukjae Jang, Hae-Na Jo, Sang-A Lee, Sukang Bae, Sang Hyun Lee, Junyeon Hwang, Han-Ik Joh, Gunuk Wang and Tae-Wook Kim
J. Mater. Chem. C 4, 1511 (2016).
Yongsung Ji, An-Na Cha, Sang-A Lee, Sukang Bae, Sang Hyun Lee, Dong Su Lee, Hyejung Choi, Gunuk Wang, Tae-Wook Kim
Org. Electron. 29, 66 (2016).
60. Effect of Polarity on Photoelectrochemical Properties of Polar and Semipolar GaN Photoanode
Hyojung Bae, Eunsook Kim, Jun-Beom Park, Sung-Ju Kang, Katsushi Fujii, Sang Hyun Lee, Hyo-Jong Lee, and Jun-Seok Ha
J. Electrochem. Soc. 163, H213 (2016).