Semiconductor nanomaterials
Semiconductor nanomaterials
Semiconductor nanomaterials
Semiconductor nanomaterials
The synthesis of new nanoscale materials with unique physical properties can enable revolutionary advances in science and technology. The Lee group are leaders in the design, synthesis, characterization, and hierarchical assembly of nanoscale materials. In addition, the Lieber group are leaders in characterizing fundamental structural and physical properties of these materials, and also fabricating and characterizing novel device structures and arrays of devices that are used in studies at the interface with biology and medicine. Research areas being pursued include the following:
-
Nanomaterials synthesis. We are pursuing studies of the growth and characterization of nanomaterials with an emphasis on the design and synthesis of nanowires with novel morphologies and complex modulation of dopant and/or composition in order to realize building blocks with novel electronic/photonic properties and/or morphologies that enable new opportunities in the life sciences.
-
Nanomaterials properties. Illuminating fundamental structural and physical properties of newly synthesized nanomaterials is central to both further synthetic advances and ‘applications’ of the nanostructures in other areas. In this regard, the Lieber group carries out state-of-the-art electron microscopy work to characterize atomic-level and up structure and composition, as well as measurements at the single nanostructure level to reveal electrical and optical properties.
-
Assembly of nanostructures. Controlled assembly of nanoscale wires and other nanomaterials is central to realizing our bottom-up paradigm of nanodevice arrays through functional systems, and as such we have maintained strong effort in developing both sophisticated and practical methods for hierarchical organization of nanomaterials. These studies are often motivated by and demonstrated with the development of novel tools and technologies that can open up opportunities at the interface with other areas of science.
The synthesis of new nanoscale materials with unique physical properties can enable revolutionary advances in science and technology. The Lee group are leaders in the design, synthesis, characterization, and hierarchical assembly of nanoscale materials. In addition, the Lieber group are leaders in characterizing fundamental structural and physical properties of these materials, and also fabricating and characterizing novel device structures and arrays of devices that are used in studies at the interface with biology and medicine. Research areas being pursued include the following:
-
Nanomaterials synthesis. We are pursuing studies of the growth and characterization of nanomaterials with an emphasis on the design and synthesis of nanowires with novel morphologies and complex modulation of dopant and/or composition in order to realize building blocks with novel electronic/photonic properties and/or morphologies that enable new opportunities in the life sciences.
-
Nanomaterials properties. Illuminating fundamental structural and physical properties of newly synthesized nanomaterials is central to both further synthetic advances and ‘applications’ of the nanostructures in other areas. In this regard, the Lieber group carries out state-of-the-art electron microscopy work to characterize atomic-level and up structure and composition, as well as measurements at the single nanostructure level to reveal electrical and optical properties.
-
Assembly of nanostructures. Controlled assembly of nanoscale wires and other nanomaterials is central to realizing our bottom-up paradigm of nanodevice arrays through functional systems, and as such we have maintained strong effort in developing both sophisticated and practical methods for hierarchical organization of nanomaterials. These studies are often motivated by and demonstrated with the development of novel tools and technologies that can open up opportunities at the interface with other areas of science.
The synthesis of new nanoscale materials with unique physical properties can enable revolutionary advances in science and technology. The Lee group are leaders in the design, synthesis, characterization, and hierarchical assembly of nanoscale materials. In addition, the Lieber group are leaders in characterizing fundamental structural and physical properties of these materials, and also fabricating and characterizing novel device structures and arrays of devices that are used in studies at the interface with biology and medicine. Research areas being pursued include the following:
-
Nanomaterials synthesis. We are pursuing studies of the growth and characterization of nanomaterials with an emphasis on the design and synthesis of nanowires with novel morphologies and complex modulation of dopant and/or composition in order to realize building blocks with novel electronic/photonic properties and/or morphologies that enable new opportunities in the life sciences.
-
Nanomaterials properties. Illuminating fundamental structural and physical properties of newly synthesized nanomaterials is central to both further synthetic advances and ‘applications’ of the nanostructures in other areas. In this regard, the Lieber group carries out state-of-the-art electron microscopy work to characterize atomic-level and up structure and composition, as well as measurements at the single nanostructure level to reveal electrical and optical properties.
-
Assembly of nanostructures. Controlled assembly of nanoscale wires and other nanomaterials is central to realizing our bottom-up paradigm of nanodevice arrays through functional systems, and as such we have maintained strong effort in developing both sophisticated and practical methods for hierarchical organization of nanomaterials. These studies are often motivated by and demonstrated with the development of novel tools and technologies that can open up opportunities at the interface with other areas of science.
The synthesis of new nanoscale materials with unique physical properties can enable revolutionary advances in science and technology. The Lee group are leaders in the design, synthesis, characterization, and hierarchical assembly of nanoscale materials. In addition, the Lieber group are leaders in characterizing fundamental structural and physical properties of these materials, and also fabricating and characterizing novel device structures and arrays of devices that are used in studies at the interface with biology and medicine. Research areas being pursued include the following:
-
Nanomaterials synthesis. We are pursuing studies of the growth and characterization of nanomaterials with an emphasis on the design and synthesis of nanowires with novel morphologies and complex modulation of dopant and/or composition in order to realize building blocks with novel electronic/photonic properties and/or morphologies that enable new opportunities in the life sciences.
-
Nanomaterials properties. Illuminating fundamental structural and physical properties of newly synthesized nanomaterials is central to both further synthetic advances and ‘applications’ of the nanostructures in other areas. In this regard, the Lieber group carries out state-of-the-art electron microscopy work to characterize atomic-level and up structure and composition, as well as measurements at the single nanostructure level to reveal electrical and optical properties.
-
Assembly of nanostructures. Controlled assembly of nanoscale wires and other nanomaterials is central to realizing our bottom-up paradigm of nanodevice arrays through functional systems, and as such we have maintained strong effort in developing both sophisticated and practical methods for hierarchical organization of nanomaterials. These studies are often motivated by and demonstrated with the development of novel tools and technologies that can open up opportunities at the interface with other areas of science.
The synthesis of new nanoscale materials with unique physical properties can enable revolutionary advances in science and technology. The Lee group are leaders in the design, synthesis, characterization, and hierarchical assembly of nanoscale materials. In addition, the Lieber group are leaders in characterizing fundamental structural and physical properties of these materials, and also fabricating and characterizing novel device structures and arrays of devices that are used in studies at the interface with biology and medicine. Research areas being pursued include the following:
-
Nanomaterials synthesis. We are pursuing studies of the growth and characterization of nanomaterials with an emphasis on the design and synthesis of nanowires with novel morphologies and complex modulation of dopant and/or composition in order to realize building blocks with novel electronic/photonic properties and/or morphologies that enable new opportunities in the life sciences.
-
Nanomaterials properties. Illuminating fundamental structural and physical properties of newly synthesized nanomaterials is central to both further synthetic advances and ‘applications’ of the nanostructures in other areas. In this regard, the Lieber group carries out state-of-the-art electron microscopy work to characterize atomic-level and up structure and composition, as well as measurements at the single nanostructure level to reveal electrical and optical properties.
-
Assembly of nanostructures. Controlled assembly of nanoscale wires and other nanomaterials is central to realizing our bottom-up paradigm of nanodevice arrays through functional systems, and as such we have maintained strong effort in developing both sophisticated and practical methods for hierarchical organization of nanomaterials. These studies are often motivated by and demonstrated with the development of novel tools and technologies that can open up opportunities at the interface with other areas of science.
2018
Hokyun Rho, Min Park, Mina Park, Junbeom Park, Jiyoon Han, Aram Lee, Sukang Bae, Tae-Wook Kim, Jun-Seok Ha, Seung Min Kim, Dong Su Lee*, Sang Hyun Lee* NPG Asia Mater. 10, 146 (2018)
79. Large area thermal light emission from autonomously formed suspended graphene arrays
Mina Park, Aram Lee, Ho Kyun Rho, Seoung-Ki Lee, Sukang Bae, Dae-Young Jeon, Dong Su Lee, Tae-Wook Kim, Yeon-Ho Im, Sang Hyun Lee* Carbon 136, 217 (2018).
Seungmin Lee, Byung Joon Moon, Hyun Jung Lee, Sukang Bae, Tae-Wook Kim, Yong Chae Jung, Jong Hyeok Park, and Sang Hyun Lee*
ACS Appl. Mater. Interfaces 10, 17335 (2018).
77. Ultrastrong Graphene−Copper Core−Shell Wires for High-Performance Electrical Cables
Sang Jin Kim, Dong Heon Shin, Yong Seok Choi, Hokyun Rho, Min Park, Byung Joon Moon, Youngsoo Kim, Seuoung-Ki Lee, Dong Su Lee, Tae-Wook Kim, Sang Hyun Lee, Keun Soo Kim, Byung Hee Hong, and Sukang Bae
ACS Nano 12, 2803 (2018).
Sang Yun Jeong, Hye-Min Shin, Yong-Ryun Jo, Yeong Jae Kim, Seungkyu Kim, Won-June Lee, Gil Ju Lee, Jaesun Song, Byung Joon Moon, Sehun Seo, Hyunji An, Sang Hyun Lee, Young Min Song, Bong-Joong Kim, Myung-Han Yoon, and Sanghan Lee
J. Phys. Chem. C 122, 7088 (2018).
75. 2D Single-Crystalline Copper Nanoplates as a Conductive Filler for Electronic Ink Applications
Jin-Won Lee, Jiyoon Han, Dong Su Lee, Sukang Bae, Sang Hyun Lee, Seoung-Ki Lee, Byung Joon Moon, Chel-Jong Choi, Gunuk Wang, and Tae-Wook Kim
Small 14, 1703312 (2018).